58 research outputs found

    TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts

    Get PDF
    Abstract3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:C>T:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:C>T:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers’ lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity

    An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials

    Get PDF
    Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ12) and titanium dioxide nanoparticles (TiO2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ12 and TiO2 NM-105 particles showed good linearity (R2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials

    An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing.

    Get PDF
    For toxicity testing of airborne particles, air-liquid interface (ALI) exposure systems have been developed for in vitro tests in order to mimic realistic exposure conditions. This puts specific demands on the cell culture models. Many cell types are negatively affected by exposure to air (e.g., drying out) and only remain viable for a few days. This limits the exposure conditions that can be used in these models: usually relatively high concentrations are applied as a cloud (i.e., droplets containing particles, which settle down rapidly) within a short period of time. Such experimental conditions do not reflect realistic long-term exposure to low concentrations of particles. To overcome these limitations the use of a human bronchial epithelial cell line, Calu-3 was investigated. These cells can be cultured at ALI conditions for several weeks while retaining a healthy morphology and a stable monolayer with tight junctions. In addition, this bronchial model is suitable for testing the effects of repeated exposures to low, realistic concentrations of airborne particles using an ALI exposure system. This system uses a continuous airflow in contrast to other ALI exposure systems that use a single nebulization producing a cloud. Therefore, the continuous flow system is suitable for repeated and prolonged exposure to airborne particles while continuously monitoring the particle characteristics, exposure concentration, and delivered dose. Taken together, this bronchial model, in combination with the continuous flow exposure system, is able to mimic realistic, repeated inhalation exposure conditions that can be used for toxicity testing

    An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials

    Get PDF
    Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ 12) and titanium dioxide nanoparticles (TiO 2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ 12 and TiO 2 NM-105 particles showed good linearity (R 2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ 12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO 2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO 2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    The 5-Hydroxymethylcytosine Landscape of Prostate Cancer

    Get PDF
    Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.publishedVersionPeer reviewe

    The development and pre-validation of an in vitro mutagenicity assay based on MutaMouse primary hepatocytes, Part I: Isolation, structural, genetic, and biochemical characterization.

    No full text
    To develop an improved in vitro mammalian cell gene mutation assay, it is imperative to address the known deficiencies associated with existing assays. Primary hepatocytes isolated from the MutaMouse are ideal for an in vitro gene mutation assay due to their metabolic competence, their "normal" karyotype (i.e., neither transformed nor immortalized), and the presence of the MutaMouse transgene for rapid and reliable mutation scoring. The cells were extensively characterized to confirm their utility. Freshly isolated cells were found to have a hepatocyte-like morphology, predominantly consisting of binucleated cells. These cells maintain hepatocyte-specific markers for up to 3 days in culture. Analyses revealed a normal murine hepatocyte karyotype with a modal ploidy number of 4n. Fluorescence in situ hybridization analysis confirmed the presence of the lambda shuttle vector on chromosome 3. The doubling time was determined to be 22.5 ± 3.3 h. Gene expression and enzymatic activity of key Phase I and Phase II metabolic enzymes were maintained for at least 8 and 24 h in culture, respectively. Exposure to β-naphthoflavone led to approximately 900- and 9-fold increases in Cyp1a1 and Cyp1a2 gene expression, respectively, and approximately twofold induction in cytochrome P450 (CYP) 1A1/1A2 activity. Exposure to phenobarbital resulted in an approximately twofold increase in CYP 2B6 enzyme activity. Following this characterization, it is evident that MutaMouse primary hepatocytes have considerable promise for in vitro mutagenicity assessment. The performance of these cells in an in vitro gene mutation assay is assessed in Part II. Environ. Mol. Mutagen. 2018. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society

    The development and pre-validation of an in vitro mutagenicity assay based on MutaMouse primary hepatocytes, Part II: Assay performance for the identification of mutagenic chemicals.

    No full text
    As demonstrated in Part I, cultured MutaMouse primary hepatocytes (PHs) are suitable cells for use in an in vitro gene mutation assay due to their metabolic competence, their "normal" phenotype, and the presence of the MutaMouse transgene for reliable mutation scoring. The performance of these cells in an in vitro gene mutation assay is evaluated in the present study, Part II. A panel of thirteen mutagenic and non-mutagenic compounds was selected to investigate the performance of the MutaMouse PH in vitro gene mutation assay. The nine mutagens represent a range of classes of chemicals and include mutagens that are both direct-acting and requiring metabolic activation. All the mutagens tested, except for ICR 191, elicited significant, concentration-dependent increases in mutant frequency (MF) ranging from 2.6- to 14.4-fold over the control. None of the four non-mutagens, including two misleading, or "false", positives (i.e., tertiary butylhydroquinone [TBHQ] and eugenol), yielded any significant increases in MF. The benchmark dose (BMD) covariate approach facilitated ranking of the positive chemicals from most (i.e., 3-nitrobenzanthrone [3-NBA], benzo[a]pyrene [BaP], and aflatoxin
    corecore